• OZONE CREATION AND DESTRUCTION

UNIT 4 – CLIMATOLOGY – PART 4

OZONE CREATION AND DESTRUCTION

The production of ozone in the stratosphere results primarily from the breaking of the chemical bonds within oxygen molecules (O2) by high-energy solar photons.

This process, called photodissociation, results in the release of single oxygen atoms, which later join with intact oxygen molecules to form ozone. Rising atmospheric oxygen concentrations some two billion years ago allowed ozone to build up in Earth’s atmosphere, a process that gradually led to the formation of the stratosphere.

Scientists believe that the formation of the ozone layer played an important role in the development of life on Earth by screening out lethal levels of UVB radiation (Ultraviolet Radiation with wavelengths between 315 and 280 nanometres) and thus facilitating the migration of life-forms from the oceans to land.

The amount of ozone in the stratosphere varies naturally throughout the year as a result of chemical processes that create and destroy ozone molecules and as a result of winds and other transport processes that move ozone molecules around the planet. Over the course of several decades, however, human activities substantially altered the ozone layer. 

Ozone depletion, the global decrease in stratospheric ozone observed since the 1970s, is most pronounced in polar regions, and it is well correlated with the increase of chlorine and bromine in the stratosphere. Those chemicals, once freed by UV radiation from the chlorofluorocarbons (CFCs) and other halocarbons (carbon-halogen compounds) that contain them, destroy ozone by stripping away single oxygen atoms from ozone molecules. Depletion is so extensive that so-called ozone holes (regions of severely reduced ozone coverage) form over the poles during the onset of their respective spring seasons.

The largest such hole—which has spanned more than 20.7 million square km (8 million square miles) on a consistent basis since 1992—appears annually over Antarctica between September and November.

As the amount of stratospheric ozone declines, more UV radiation reaches Earth’s surface, and scientists worry that such increases could have significant effects on ecosystems and human health. The concern over exposure to biologically harmful levels of UV radiation has been the main driver of the creation of international treaties such as the Montreal Protocol on Substances That Deplete the Ozone Layer and its amendments, designed to protect Earth’s ozone layer.

The Montreal Protocol has been a success, with some 99 percent of the ozone-depleting chemicals regulated by the treaty having been phased out since its adoption in 1987. Compliance with international treaties that phased out the production and delivery of many ozone-depleting chemicals,

 combined with upper stratospheric cooling due to increased carbon dioxide, is thought to have contributed to the shrinking of the ozone holes over the poles and to slightly higher stratospheric ozone levels overall. Continued reductions in chlorine loading are expected to result in smaller ozone holes above Antarctica after 2040.

However, some scientists noted that gains in stratospheric ozone levels have only occurred in the upper stratosphere, with declines in ozone concentrations in the lower stratosphere outpacing increases in the upper stratosphere.

[pvc_stats postid="" increase="0" show_views_today="1"]
Scroll to Top